Structural Calculations Cover Sheet

Project Number:	2022.039
Project Name:	Ross Parks Residence

Date:March 23, 2022Architect:Suzanne Zahr

Structural Design For: Structural design for an addition and remodel. **Construction Type:** Conventional wood framing with conventional concrete foundation.

CODES

2018 International Building Code (IBC) 2018 NDS ASCE 7-16

LOADS

Dead Loads	As required	OT BUC 23434 SHE
Floor Load	40 psf, 60 psf decks	SJONAL EN
Roof Load	25 psf	and a second sec
Wind	110 mph, Exposure C, Per ASC	E 7-16 Section 28, Kzt = 1.00
Seismic	Per ASCE 7-16 Section 12Peak Ground Accelerations (PGA) basePGA 1 sec = 0.503 PGA 2 sec = 1.4	d on USGS Hazards Program 2003, by Lat/Lon. 54 %V = .149 * DL

Material Design Values

Soils (assumed)	Minimum 1,500 psf allowed bearing (subject to field verification)				
Concrete	f'c=2,500 psi; 5-1/2 sack mix, or alternate mix pre-approved by bldg. dept.				
Reinforcing	Grade 60; Fy=60,000 psi minimum				
Sawn Lumber	Joists, Rafters:	Hem-Fir #2 and better			
	Beams, Posts:	DF-L #2			
	Studs & Plates: Hem-Fir Standard				
Parallam Beams	2.2E PSL, Fb=2,900 psi, Fv=290 psi, E=2.0*10^6 psi (minimum)				
Anchor Bolts	ASTM A325 hold down bolts, F1554 Anchor Bolts, A307 other bolts				

John S. Apolis, P.	.E.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence		Date:	23-Mar-22
Architect:	Suzanne	Zahr		Page number:	R1
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International B	Building Co	de (IBC)			2018 NDS
Beam Description	n: Porch J	loists			
Fully Supported:	1	Snow Load:	1	Wind Load:	
Repetitive Member:		P.T. Lumber:		Wet Use:	
Geometry and Loads:					
Span:	3 ft	Tributary Width:	2 ft	P Location:	1.75 ft
Add'l uniform DL:		DL unit load:	15 psf	Concentrated DL:	
Add'l uniform LL:		LL unit load:		Concentrated LL:	
Add'l uniform SL:		SL unit load:	25 psf	Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	45 lbs	DL Reaction 2:	45 lbs	Note: Design autom	atically uses
LL Reaction 1:	0 lbs	LL Reaction 2:	0 lbs	ASD load combinati	ions
SL Reaction 1:	75 lbs	SL Reaction 2:	75 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	120 lbs	Total Reaction 2:	120 lbs		
Material Properties:					
E	1.3 msi	E'	1.3 msi		
Fb	850 psi	Fb'	1271 psi		
Fv	150 psi	Fv'	173 psi		
Fc perp	405 psi	Fc perp'	405 psi		
Emin	0.47 msi	Emin'	0.47 msi		
Deflection analysis:					
For total	l load: Allowe	d deflection criteria	i, span/	240	
For LL	only: Allowe	d deflection criteria	ı, span/	480	
Max. allowed total defl:	0.15 in		Max LL defl:	0.08 in	
Total defl. * I:	0.11 in^4		Required I:	0.75 in^4	
LL defl. * I:	0.07 in^4		Required I:	0.93 in^4	
Actual deflections:	TOTAL:	0.01 in		0. in	
Force analysis:					
Max. moment:	90	ft-lb	Max Shear:	120	lbs
Selected Member [.]	(1)	HF#2	1.5	X	5.5
	(1)		1.0	1	
Membe	er properties:	Provided:		Required:	
Mom	ent of inertia:	20.8 in^4		0.93 in^4	
Sect	tion Modulus:	7.56 in^3		0.85 in^3	
	Section Area:	8.25 in^2		1.04 in^2	
]	Bearing Area:			0.3 in^2	
Minimum bearing	g dimensions:	1.5 in	Х	0.2 in	

MEMBER REPORT

Roof, R2: New Cantilever Roof Joist 1 piece(s) 2 x 8 HF No.2 @ 24" OC

Sloped Length: 13' 3 3/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	307 @ 11' 4 1/2"	911 (1.50")	Passed (34%)		1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	336 @ 3' 11 3/4"	1251	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	556 @ 7' 9 1/16"	1477	Passed (38%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.087 @ 7' 5 3/16"	0.314	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.134 @ 7' 5 15/16"	0.472	Passed (L/846)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Member Pitch : 7/12

· Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (Ibs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beveled Plate - HF	5.50"	5.50"	1.50"	276	397	673	Blocking
2 - Hanger on 7 1/4" HF ledgerOnMasonry	1.50"	Hanger ¹	1.50"	123	194	317	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	13' 2" o/c	
Bottom Edge (Lu)	13' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	LRU26Z	1.94"	N/A	4-10dx1.5	5-10d		
Refer to manufacturer notes and instructions for proper installation and use of all connectors							

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 11' 6"	24"	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
William Nocka CSES (978) 503-9935 11wnocka@gmail.com	

Member Length : 13' 6 1/4"

John S. Apolis, P.	Е.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence	;	Date:	23-Mar-22
Architect:	Suzanne	Zahr		Page number:	M1
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International B	Building Co	de (IBC)			2018 NDS
Beam Description	n: West F	lush Beam			
Fully Supported:	1	Snow Load:		Wind Load:	
Repetitive Member:		P.T. Lumber:		Wet Use:	
Geometry and Loads:					
Span:	14 ft	Tributary Width:	11.5 ft	P Location:	1.75 ft
Add'l uniform DL:		DL unit load:	12 psf	Concentrated DL:	
Add'l uniform LL:		LL unit load:	40 psf	Concentrated LL:	
Add'l uniform SL:		SL unit load:		Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	966 lbs	DL Reaction 2:	966 lbs	Note: Design autom	atically uses
LL Reaction 1:	3220 lbs	LL Reaction 2:	3220 lbs	ASD load combinat	ions
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	4186 lbs	Total Reaction 2:	4186 lbs		
Material Properties:					
<u>E</u>	2 msi	E'	2 msi		
Fb	2900 psi	Fb'	2985 psi		
Fv	290 psi	Fv'	290 psi		
Fc perp	625 psi	Fc perp'	625 psi		
Emin	0.914 msi	Emin'	0.914 msi		
Deflection analysis:					
For total	load: Allowe	d deflection criteria	a, span/	240	
For LL	only: Allowe	d deflection criteria	a, span/	360	
Max. allowed total defl:	0.7 in		Max LL defl:	0.47 in	
Total defl. * I:	258.44 in^4		Required I:	369.21 in^4	
LL defl. * I:	198.8 in^4		Required I:	426.01 in^4	
Actual deflections:	TOTAL:	0.56 in	1	0.43 in	
Force analysis:					
Max moment:	14651	ft-lb	Max Shear:	4186	lbs
Mux. moment.	11001	11 10	Mux bilour.	1100	105
Selected Member:	(1)	PSL	7	X	9.25
<u>[</u>					<u>1</u>
Membe	r properties:	Provided:		Required:	
Mom	ent of inertia:	461.68 in^4		426.01 in^4	
Sect	ion Modulus:	99.82 in^3		58.9 in^3	
	Section Area:	64.75 in^2		21.65 in^2	
I	Bearing Area:			6.7 in^2	
Minimum bearing	g dimensions:	7. in	х	0.96 in	

John S. Apolis, P.	.Е.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence	;	Date:	23-Mar-22
Architect:	Suzanne	Zahr		Page number:	M2
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International B	Building Co	de (IBC)			2018 NDS
Beam Description	n: West F	lush Beam			
Fully Supported:	1	Snow Load:		Wind Load:	
Repetitive Member:		P.T. Lumber:		Wet Use:	
Geometry and Loads:					
Span:	20.5 ft	Tributary Width:	6.75 ft	P Location:	1.75 ft
Add'l uniform DL:	350.5 lbs/ft	DL unit load:	12 psf	Concentrated DL:	
Add'l uniform LL:		LL unit load:	40 psf	Concentrated LL:	
Add'l uniform SL:	472 lbs/ft	SL unit load:		Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	4423 lbs	DL Reaction 2:	4423 lbs	Note: Design autom	atically uses
LL Reaction 1:	2768 lbs	LL Reaction 2:	2768 lbs	ASD load combinati	ons
SL Reaction 1:	4838 lbs	SL Reaction 2:	4838 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	10127 lbs	Total Reaction 2:	10127 lbs		
Material Pronerties.					
<u>intaternar i roperties.</u> E	2.2 msi	E'	2.2 msi		
Fb	2900 psi	E Fb'	2.2 msi 2772 nsi		
Fv	290 psi	Fv'	290 psi		
Fc perp	625 psi	Fc perp'	625 psi		
Emin	0.914 msi	Emin'	0.914 msi		
Deflection analysis:					
For total	load Allowe	d deflection criteria	span/	240	
For LL	only: Allowe	d deflection criteria	a, span/	360	
Max. allowed total defl:	1.03 in		Max LL defl:	0.68 in	
Total defl. * I:	2119.62 in^4		Required I:	2067.92 in^4	
LL defl. * I:	1340.23 in^4		Required I:	1961.31 in^4	
Actual deflections:	TOTAL:	0.83 in	1	0.53 in	
Force analysis:					
Max moment	51901	ft-lb	Max Shear	10127	lbs
Mux. moment.	51901	11 10	Mux Silvur.	10127	
Selected Member:	(1)	PSL	5.25	X	18
Membe	r properties:	Provided:		Required:	
Mom	ent of inertia:	2551.5 in^4		2067.92 in^4	
Sect	ion Modulus:	283.5 in^3		224.65 in^3	
	Section Area:	94.5 in^2		52.38 in^2	
]	Bearing Area:			16.2 in^2	
Minimum bearing	g dimensions:	5.25 in	Х	3.09 in	

John S. Apolis, P.	.Е.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence)	Date:	23-Mar-22
Architect:	Suzanne	Zahr		Page number:	M3
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International B	Building Co	de (IBC)			2018 NDS
Beam Description	n: East Do	oor Header			
Fully Supported:	1	Snow Load:	1	Wind Load:	
Repetitive Member:		P.T. Lumber:		Wet Use:	
Geometry and Loads:					
Span:	6.5 ft	Tributary Width:	1.33 ft	P Location:	1.75 ft
Add'l uniform DL:	138 lbs/ft	DL unit load:		Concentrated DL:	
Add'l uniform LL:		LL unit load:		Concentrated LL:	
Add'l uniform SL:	198.5 lbs/ft	SL unit load:		Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	449 lbs	DL Reaction 2:	449 lbs	Note: Design automa	atically uses
LL Reaction 1:	0 lbs	LL Reaction 2:	0 lbs	ASD load combinati	ons
SL Reaction 1:	645 lbs	SL Reaction 2:	645 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	1094 lbs	Total Reaction 2:	1094 lbs		
Material Properties:					
E	1.3 msi	E'	1.3 msi		
Fb	850 psi	Fb'	1173 psi		
Fv	150 psi	Fv'	173 psi		
Fc perp	405 psi	Fc perp'	405 psi		
Emin	0.47 msi	Emin'	0.47 msi		
Deflection analysis:					
For total	load: Allowe	d deflection criteria	a, span/	240	
For LL	only: Allowe	d deflection criteria	a, span/	480	
Max. allowed total defl:	0.33 in		Max LL defl:	0.16 in	
Total defl. * I:	10.4 in^4		Required I:	31.99 in^4	
LL defl. * I:	6.13 in^4		Required I:	37.74 in^4	
Actual deflections:	TOTAL:	0.11 in		0.06 in	
Force analysis:					
Max. moment:	1777	ft-lb	Max Shear:	1094	lbs
Selected Member:	(2)	HF#2	15	Y	7 25
	(2)		1.0	Α	1.23
Momho	r nronerties•	Provided		Required	
Mom	ent of inertia	95 27 in^4		37 74 in^4	
Sect	ion Modulus	26.28 in^3		18.18 in^3	
500	Section Area:	21.75 in^2		9.51 in^2	
]	Bearing Area:			2.7 in^2	
Minimum bearing	g dimensions:	3. in	Х	0.9 in	

John S. Apolis, P.	Е.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence	!	Date:	23-Mar-22
Architect:	Suzanne	Zahr		Page number:	M4
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International B	Building Co	de (IBC)			2018 NDS
Beam Description	n: East Do	oor Header			
Fully Supported:	1	Snow Load:	1	Wind Load:	
Repetitive Member:		P.T. Lumber:		Wet Use:	
Geometry and Loads:					
Span:	10.25 ft	Tributary Width:	1.33 ft	P Location:	1.75 ft
Add'l uniform DL:	138 lbs/ft	DL unit load:		Concentrated DL:	
Add'l uniform LL:		LL unit load:		Concentrated LL:	
Add'l uniform SL:	198.5 lbs/ft	SL unit load:		Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	707 lbs	DL Reaction 2:	707 lbs	Note: Design automa	atically uses
LL Reaction 1:	0 lbs	LL Reaction 2:	0 lbs	ASD load combinati	ions
SL Reaction 1:	1017 lbs	SL Reaction 2:	1017 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	1725 lbs	Total Reaction 2:	1725 lbs		
Material Properties:					
<u>E</u>	1.6 msi	E'	1.6 msi		
Fb	900 psi	Fb'	1242 psi		
Fv	180 psi	Fv'	207 psi		
Fc perp	625 psi	Fc perp'	625 psi		
Emin	0.58 msi	Emin'	0.58 msi		
Deflection analysis:					
For total	load: Allowe	d deflection criteria	. span/	240	
For LL	only: Allowe	d deflection criteria	, span/	480	
Max. allowed total defl:	0.51 in		Max LL defl:	0.26 in	
Total defl. * I:	52.23 in^4		Required I:	101.92 in^4	
LL defl. * I:	30.81 in^4		Required I:	120.24 in^4	
Actual deflections:	TOTAL:	0.23 in	1	0.13 in	
Force analysis:					
Max. moment	4419	ft-lb	Max Shear	1725	lbs
Mux. moment.	1117	11 10	Mux Shour.	1723	
Selected Member:	(1)	DF #2	3.5	X	9.25
<u>L</u>	. ,				l
Membe	r properties:	Provided:		Required:	
Mom	ent of inertia:	230.84 in^4		120.24 in^4	
Sect	ion Modulus:	49.91 in^3		42.7 in^3	
	Section Area:	32.38 in^2		12.5 in^2	
]	Bearing Area:			2.76 in^2	
Minimum bearing	g dimensions:	3.5 in	х	0.79 in	

John S. Apolis, P.	E.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence)	Date:	23-Mar-22
Architect:	Suzanne	Zahr		Page number:	M5
BEAM DESIG	N (Unifo	rm Load+(Concentra	ated Load)	
2018 International B	uilding Co	de (IBC)		,	2018 NDS
Beam Description	h: South V	Vindow Head	der		
Fully Supported:	1	Snow Load:	1	Wind Load:	
Repetitive Member:		P.T. Lumber:		Wet Use:	
Geometry and Loads:					
Span:	7 ft	Tributary Width:	3 ft	P Location:	1.75 ft
Add'l uniform DL:	64 lbs/ft	DL unit load:	27 psf	Concentrated DL:	
Add'l uniform LL:		LL unit load:	40 psf	Concentrated LL:	
Add'l uniform SL:		SL unit load:	25 psf	Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	508 lbs	DL Reaction 2:	508 lbs	Note: Design automa	ntically uses
LL Reaction 1:	420 lbs	LL Reaction 2:	420 lbs	ASD load combination	ons
SL Reaction 1:	263 lbs	SL Reaction 2:	263 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	1019 lbs	Total Reaction 2:	1019 lbs		
Material Properties:					
<u>E</u>	1.3 msi	E'	1.3 msi		
Fb	850 psi	Fb'	1173 psi		
Fv	150 psi	Fv'	173 psi		
Fc perp	405 psi	Fc perp'	405 psi		
Emin	0.47 msi	Emin'	0.47 msi		
Deflection analysis:					
For total	load: Allowe	d deflection criteria	a, span/	240	
For LL	only: Allowe	d deflection criteria	a, span/	480	
Max. allowed total defl:	0.35 in		Max LL defl:	0.18 in	
Total defl. * I:	14.13 in^4		Required I:	40.37 in^4	
LL defl. * I:	8.1 in^4		Required I:	46.31 in^4	
Actual deflections:	TOTAL:	0.15 in		0.09 in	
Force analysis:					
Max. moment:	1784	ft-lb	Max Shear:	1019 1	bs
Selected Member	(2)	HF #2	1.5	x	7.25
	(-)		1.0		
Membe	r properties•	Provided		Required	
Mom	ent of inertia	95.27 in^4		46.31 in^4	
Sect	ion Modulus:	26.28 in^3		18.25 in^3	
2000	Section Area:	21.75 in^2		8.86 in^2	
I	Bearing Area:			2.52 in^2	
Minimum bearing	g dimensions:	3. in	Х	0.84 in	

John S. Apolis, P.E.	(CSES, Inc.			Job n	umber:	2022.039
Project:	Ross Parks	Residence				Date:	23-Mar-22
Architect:	Suzanne Za	hr			Page n	umber:	M6
Post Design (Com	bined Axis	al and Moi	ment	Los	ading		
2018 International Build	ling Code (IB	<u>()</u>			541118/		2018 NDS
Post Description: Po	sts for bean	o, 1 M1					
Snow Load:	1	Wind Load:					
Repetitive Member:		P.T. Lumber:					
Geometry and loads:							
Height	8 ft	w(d)			0 plf	M(d)	0 ft-lbs
Axial Load	4186 lbs	w(b)			0 plf	M(b)	0 ft-lbs
Le(d)	8 ft	Le(b)			0.5 ft		
Material Properties:							
Fb1	900 psi		Fb(d)'			1035 psi	
Fb2	900 psi		Fb(b)'			1035 psi	
Fc	1350 psi		Fc'			568.13 psi	
E	1.6 msi		E'			1.6 msi	
Emin	0.58 msi		Emin'			0.58 msi	
Selected Member:	DF #2			3.5	Х		3.5
Mombournersties			Voriah	b			d
Section Modulus (d):	7 1 ir	^2	variad Dh(d)	les:		5.24	
Section Modulus (d).	7.1 III 7.1 ir	^2	Rb(h)			1 31	
Section Area:	12.3 in	n^2	c			0.8	
Member stresses: I	Provided				R	equired	
FcE(d)	634 psi	>			fc	342 psi	OK
FcE(b)	162231 psi	>			fc	342 psi	OK
FbE	25375 psi	>			fb(d)	0 psi	OK
FbE	25375 psi	>			fb(b)	0 psi	OK
Bending and Axial Compress	ion Check:						
NDS 2018 EQ 3.9-3		0.36		<		1.0	<u>OK</u>

John S. Apolis, P.E.	CS	SES, Inc.		Job r	umber:	2022.039
Project:	Ross Parks R	esidence			Date:	4-Apr-22
Architect:	Suzanne Zah	r		Page n	umber:	M7
Post Design (Com	bined Axial	and Mome	ent Loa	ading)	
2018 International Build	ding Code (IBC)		<u> </u>		2018 NDS
Post Description: Po	sts for beam	M2				
Snow Load:	1	Wind Load:				
Repetitive Member:		P.T. Lumber:				
Geometry and loads:						
Height	8 ft	w(d)		0 plf	M(d)	0 ft-lbs
Axial Load	10127 lbs	w(b)		0 plf	M(b)	0 ft-lbs
Le(d)	0.5 ft	Le(b)		8 ft		
Material Properties:						
Fb1	900 psi	Fb(d)'		1035 psi	
Fb2	900 psi	Fb(b)'		1035 psi	
Fc	1350 psi	Fc'			568.13 psi	
E	1.6 msi	E'			1.6 msi	
Emin	0.58 msi	Em	in'		0.58 msi	
Selected Member:	DF #2		3.5	Х		9.25
			b			d
Member properties:		Va	riables:			
Section Modulus (d):	49.9 in^3	B Rb(d)		0.50	
Section Modulus (b):	18.9 in^3	B Rb(b)		8.51	
Section Area:	32.4 in^2	с с			0.8	
Member stresses:	Provided			R	equired	
FcE(d)	1133133 psi	>		fc	313 psi	OK
FcE(b)	634 psi	>		fc	313 psi	OK
FbE	9601 psi	>		fb(d)	0 psi	OK
FbE	9601 psi	>		fb(b)	0 psi	OK
Bending and Axial Compress	sion Check:					
NDS 2018 EQ 3.9-3		0.30	<		1.0	<u>OK</u>

John S. Apolis, P.E.	CS	SES, Inc.			Job n	umber:	2022.039
Project:	Ross Parks R	esidence				Date:	23-Mar-22
Architect:	Suzanne Zah	r			Page n	umber:	M8
Post Design (Com	bined Axial	and Mor	nent	Lo	ading		
2018 International Build	ling Code (IBC)			0/	, 	2018 NDS
Post Description: SE	Corner Post	, ,					
Snow Load:	1	Wind Load:					
Repetitive Member:		P.T. Lumber:					
Geometry and loads:					0.10		0.0.11
Height	8 ft	w(d)			0 plf	M(d)	0 ft-lbs
Axial Load	2744 lbs	w(b)			0 plf	M(b)	0 ft-lbs
Le(d)	8 ft	Le(b)			8 ft		
Material Properties:							
Fb1	850 psi		Fb(d)'			977.5 psi	
Fb2	850 psi		Fb(b)'			977.5 psi	
Fc	1300 psi		Fc'			355.15 psi	
E	1.3 msi		E'			1.3 msi	
Emin	0.47 msi		Emin'			0.47 msi	
Selected Member:	HF #2			3	Х		3.5
				b			d
Member properties:			Variabl	es:			
Section Modulus (d):	6.1 in^.	3	Rb(d)			4.85	
Section Modulus (b):	5.3 in^.	3	Rb(b)			6.11	
Section Area:	10.5 in^2	2	с			0.8	
Member stresses: I	Provided				R	equired	
FcE(d)	514 psi	>			fc	261 psi	OK
FcE(b)	377 psi	>			fc	261 psi	OK
FbE	15107 psi	>			fb(d)	0 psi	OK
FbE	15107 psi	>			fb(b)	0 psi	OK
Bending and Axial Compress	ion Check:						
NDS 2018 EQ 3.9-3		0.54		<		1.0	<u>OK</u>

BEAM DESCRI	PTION FOR ,	12 - CONVA	ETION DESI	-N
Looding O	Beam MZ			
d= 15'x 15psf	+ 8'x8 p55 + 6.74	5'x 12 pest +	62 pif = 43	Zplf
EXIST. PoorF	EXIST. With	EXIST. FLOOC	NEW FOOF	
l = 6.75' × 40' EX 15T. FLOCE	= 270 plf			
5 = 15' × 25p3F	+97 pif = 4	72 plf		
# × 151. Paio F	Revo RoorF			
d+.75(l+5)	= 989 pl F (low flow	ling from or system	ekizting wal to new be	(/))
-> ADD NEW "Pe BOLT TO ST	cket BEAN ⁴ Bela Eucropal BEAM	W EXISTWE FOR 989	WALL AND PIT.	2
-> SEE MIO	FOR BOLTED CO	NETION	PESIGN	
Puerx = 887#	FOP A 3/4*Ø	Berl-T		
(Z) 3/4 Ø BOLT	5 C 16" C.C. N	n = 1,3	st pif cape <u>Ok</u>	izity -
CONSULTING STRUCTURAL EN Residential and Commercia	NGINEERING SERVICES	Project No. 2022 Project Name	.039 Date 4-1 BB PARKS	1-22

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com

Page <u>M9</u>

Revision _

John S	5. Apolis, P.I	Ξ.		CSES,	Inc.	Job number:	2022.039
Projec	et: Ross	Parks				Date:	4-Apr-22
Archit	tect: Suza	nne Zah	r			Page number:	M10
Dowe	l-Type Fas	tener D	esign	(single	shear)		
2018 In	ternational Bu	uilding Coo	le (IBC))	· · · · · · · · · · · · · · · · · · ·		2018 NDS
Conne	ection Descri	ption: Bu	uilt Up	Beam l	Bolts		
Dowel P	roperties:						
D	0.75 in	Dowel D	iameter	Fyb	45000 psi	dowel bending yield	strength
Member	Properties:			Single S	hear		
Ν	Main member	Side Mer	nber	8			
L	5.25	3.5	in	dowel be	aring length		
Fell	5600	5600	psi	dowel be	aring strength		
FeT	2578	2578	psi	dowel be	aring strength		
Feø	2578	2578	psi	dowel be	aring strength		
Cd	1.15	1.15	1	Load Du	ration Factor		
Ctn	1	1		Toenail	Factor		
$C\Delta$	1	1		Geometr	y Factor		
θ	90	90		maximu	n angle of load	to grain (0 to 90)	
Rd1	5.0	5.0		reduction	n term (see table	e 11.3.1B NDS)	
Rd2	4.5	4.5		reduction	n term (see table	e 11.3.1B NDS)	
Rd3	4.0	4.0		reduction	n term (see table	e 11.3.1B NDS)	
k1	0.54	0.54		NDS pg.	71		
k2	1.17	1.17		NDS pg.	71		
k3	1.37	1.37		NDS pg.	71		
Re	1.00	1.00		Fem/Fs			
Rt	1.50	1.50		Lm/Ls			
NDS EQ	<u>)</u> .			Failure r	nechanism (ND	S fig. I1)	
11.3-1	2335	2335	lbs	Im			
11.3-2	1557	1557	lbs	Is			
11.3-3	926	926	lbs	Π			
11.3-4	1139	1139	lbs	IIIm			
11.3-5	887	887	lbs	IIIs			
11.3-6	1006	1006	lbs	IV			
Z	887	887	lbs				
Shear (Capacity:	Main M	lember	887 #		Side Member: 8	887 #

John S. Apolis, P.	.Е.		Job number:	2022.039	
Project:	Ross Par	ks Residence	;	Date:	23-Mar-22
Architect:	Suzanne	Zahr		Page number:	D1
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International B	Building Co	de (IBC)			2018 NDS
Beam Description	n: Additio	n Floor Joist	ts		
Fully Supported:	1	Snow Load:		Wind Load:	
Repetitive Member:	1	P.T. Lumber:		Wet Use:	
Geometry and Loads:					
Span:	9 ft	Tributary Width:	1.33 ft	P Location:	1.75 ft
Add'l uniform DL:		DL unit load:	12 psf	Concentrated DL:	
Add'l uniform LL:		LL unit load:	40 psf	Concentrated LL:	
Add'l uniform SL:		SL unit load:		Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	72 lbs	DL Reaction 2:	72 lbs	Note: Design autom	atically uses
LL Reaction 1:	239 lbs	LL Reaction 2:	239 lbs	ASD load combinati	ions
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	311 lbs	Total Reaction 2:	311 lbs		
Material Properties:					
E	1.3 msi	E'	1.3 msi		
Fb	850 psi	Fb'	1173 psi		
Fv	150 psi	Fv'	150 psi		
Fc perp	405 psi	Fc perp'	405 psi		
Emin	0.47 msi	Emin'	0.47 msi		
Deflection analysis:					
For total	load: Allowe	d deflection criteria	a, span/	240	
For LL	only: Allowe	d deflection criteria	a, span/	480	
Max. allowed total defl:	0.45 in		Max LL defl:	0.23 in	
Total defl. * I:	7.85 in^4		Required I:	17.45 in^4	
LL defl. * I:	6.04 in^4		Required I:	26.85 in^4	
Actual deflections:	TOTAL:	0.16 in		0.13 in	
Force analysis:					
Max. moment:	700	ft-lb	Max Shear:	311	lbs
Selected Member:	(1)	HF #2	1.5	X	7.25
	(-)				
Membe	r properties:	Provided:		Required:	
Mom	ent of inertia:	47.63 in^4		26.85 in^4	
Sect	tion Modulus:	13.14 in^3		7.16 in^3	
	Section Area:	10.88 in^2		3.11 in^2	
]	Bearing Area:			0.77 in^2	
Minimum bearing	g dimensions:	1.5 in	Х	0.51 in	

John S. Apolis, P.	.Е.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence	<u>,</u>	Date:	23-Mar-22
Architect:	Suzanne	Zahr		Page number:	D2
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International B	Building Co	de (IBC)			2018 NDS
Beam Description	n: Deck Jo	oists Below H	lot Tub		
Fully Supported:	1	Snow Load:		Wind Load:	
Repetitive Member:	1	P.T. Lumber:		Wet Use:	1
Geometry and Loads:					
Span:	5.5 ft	Tributary Width:	1 ft	P Location:	1.75 ft
Add'l uniform DL:		DL unit load:	200 psf	Concentrated DL:	
Add'l uniform LL:		LL unit load:	60 psf	Concentrated LL:	
Add'l uniform SL:		SL unit load:		Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	550 lbs	DL Reaction 2:	550 lbs	Note: Design automa	atically uses
LL Reaction 1:	165 lbs	LL Reaction 2:	165 lbs	ASD load combinati	ons
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	715 lbs	Total Reaction 2:	715 lbs		
Material Properties:					
Е	1.3 msi	E'	1.17 msi		
Fb	850 psi	Fb'	997 psi		
Fv	150 psi	Fv'	146 psi		
Fc perp	405 psi	Fc perp'	271 psi		
Emin	0.47 msi	Emin'	0.423 msi		
Deflection analysis:					
For total	load: Allowe	d deflection criteria	a, span/	240	
For LL	only: Allowe	d deflection criteria	a, span/	480	
Max. allowed total defl:	0.28 in		Max LL defl:	0.14 in	
Total defl. * I:	4.58 in^4		Required I:	16.64 in^4	
LL defl. * I:	1.06 in^4		Required I:	7.68 in^4	
Actual deflections:	TOTAL:	0.1 in		0.02 in	
Force analysis:					
Max. moment:	983	ft-lb	Max Shear:	715	lbs
Selected Member:	(1)	HF #2	1.5	X	7.25
<u>[</u>					
Membe	r properties:	Provided:		Required:	
Mom	ent of inertia:	47.63 in^4		16.64 in^4	
Sect	ion Modulus:	13.14 in^3		11.83 in^3	
	Section Area:	10.88 in^2		7.37 in^2	
]	Bearing Area:			2.63 in^2	
Minimum bearing	g dimensions:	1.5 in	х	1.76 in	

MEMBER REPORT

Main, D3: Deck Joists 1 piece(s) 2 x 8 HF No.2 @ 16" OC

Overall Length: 12' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	777 @ 8' 7 1/4"	2126 (3.50")	Passed (37%)		1.0 D + 1.0 L (Adj Spans)
Shear (lbs)	331 @ 7' 10 1/4"	979	Passed (34%)	0.90	1.0 D + 1.0 L (Adj Spans)
Moment (Ft-Ibs)	-729 @ 8' 7 1/4"	1156	Passed (63%)	0.90	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.136 @ 12' 6"	0.200	Passed (2L/688)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.161 @ 12' 6"	0.390	Passed (2L/580)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/0.2") and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (Ibs)			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 7 1/4" SPF ledgerOnMasonry	3.50"	Hanger ¹	1.50"	43	221	264	See note 1
2 - Beam - SPF	3.50"	3.50"	1.50"	37	438/-111	475/- 111	None
3 - Beam - SPF	3.50"	3.50"	1.50"	120	656	776	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	12' 3" o/c				
Bottom Edge (Lu)	11' o/c				
Maximum allowable bracing intervals based on applied load					

ium allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(0.90)	Comments
1 - Uniform (PSF)	0 to 12' 6"	16"	12.0	60.0	Default Load

ForteWEB Software Operator	Job Notes
William Nocka CSES (978) 503-9935 11wnocka@gmail.com	

John S. Apolis, P.	.Е.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence	;	Date:	23-Mar-22
Architect:	Suzanne	Zahr		Page number:	D4
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International B	uilding Co	de (IBC)		,	2018 NDS
Beam Description	n: 8' Max	Deck Joists			
Fully Supported:	1	Snow Load:		Wind Load:	
Repetitive Member:	1	P.T. Lumber:	1	Wet Use:	
Geometry and Loads:					
Span:	8 ft	Tributary Width:	1.33 ft	P Location:	1.75 ft
Add'l uniform DL:		DL unit load:	12 psf	Concentrated DL:	
Add'l uniform LL:		LL unit load:	60 psf	Concentrated LL:	
Add'l uniform SL:		SL unit load:		Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	64 lbs	DL Reaction 2:	64 lbs	Note: Design automa	atically uses
LL Reaction 1:	319 lbs	LL Reaction 2:	319 lbs	ASD load combinati	ons
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	383 lbs	Total Reaction 2:	383 lbs		
Material Properties:					
E	1.3 msi	E'	1.235 msi		
Fb	850 psi	Fb'	938 psi		
Fv	150 psi	Fv'	120 psi		
Fc perp	405 psi	Fc perp'	405 psi		
Emin	0.47 msi	Emin'	0.4465 msi		
Deflection analysis:					
For total	load: Allowe	d deflection criteria	a, span/	240	
For LL	only: Allowe	d deflection criteria	a, span/	480	
Max. allowed total defl:	0.4 in		Max LL defl:	0.2 in	
Total defl. * I:	7.15 in^4		Required I:	17.86 in^4	
LL defl. * I:	5.95 in^4		Required I:	29.77 in^4	
Actual deflections:	TOTAL:	0.15 in		0.13 in	
Force analysis:					
Max. moment:	766	ft-lb	Max Shear:	383	lbs
1					
Selected Member:	(1)	HF #2	1.5	X	7.25
Membe	r properties:	Provided:		Required:	
Mom	ent of inertia:	47.63 in^4		29.77 in^4	
Sect	ion Modulus:	13.14 in^3		9.8 in^3	
	Section Area:	10.88 in^2		4.79 in^2	
]	Bearing Area:			0.95 in^2	
Minimum bearing	g dimensions:	1.5 in	х	0.63 in	

John S. Apolis, P.	Е.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence		Date:	23-Mar-22
Architect:	Suzanne	Zahr		Page number:	D5
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International B	uilding Co	de (IBC)		,	2018 NDS
Beam Description	1: Drop B	eam @ Hot]	Гub		
Fully Supported:	1	Snow Load:		Wind Load:	
Repetitive Member:		P.T. Lumber:	1	Wet Use:	
Geometry and Loads:					
Span:	4 ft	Tributary Width:	2.75 ft	P Location:	1.75 ft
Add'l uniform DL:	33 lbs/ft	DL unit load:	200 psf	Concentrated DL:	
Add'l uniform LL:	165 lbs/ft	LL unit load:	60 psf	Concentrated LL:	
Add'l uniform SL:		SL unit load:	1	Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	1166 lbs	DL Reaction 2:	1166 lbs	Note: Design automa	tically uses
LL Reaction 1:	660 lbs	LL Reaction 2:	660 lbs	ASD load combination	ons
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	1826 lbs	Total Reaction 2:	1826 lbs		
Material Properties:					
E	1.6 msi	E'	1.52 msi		
Fb	900 psi	Fb'	936 psi		
Fv	180 psi	Fv'	144 psi		
Fc perp	625 psi	Fc perp'	625 psi		
Emin	0.58 msi	Emin'	0.551 msi		
Deflection analysis:					
For total	load: Allowe	d deflection criteria	a, span/	240	
For LL	only: Allowe	d deflection criteria	a, span/	480	
Max. allowed total defl:	0.2 in		Max LL defl:	0.1 in	
Total defl. * I:	3.46 in^4		Required I:	17.3 in^4	
LL defl. * I:	1.25 in^4		Required I:	12.51 in^4	
Actual deflections:	TOTAL:	0.03 in		0.01 in	
Force analysis:					
Max. moment:	1826	ft-lb	Max Shear:	1826 1	bs
Selected Member:	(1)	DF #2	3.5	X	7.25
<u>[</u>					
Membe	r properties:	Provided:		Required:	
Mom	ent of inertia:	111.15 in^4		17.3 in^4	
Sect	ion Modulus:	30.66 in^3		23.41 in^3	
	Section Area:	25.38 in^2		19.02 in^2	
1	Bearing Area:			2.92 in^2	
Minimum bearing	g dimensions:	3.5 in	х	0.83 in	

John S. Apolis, P.	.Е.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence	;	Date:	23-Mar-22
Architect:	Suzanne	Zahr		Page number:	D6
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International B	uilding Co	de (IBC)		,	2018 NDS
Beam Description	n: Typical	Drop Beam			
Fully Supported:	1	Snow Load:		Wind Load:	
Repetitive Member:		P.T. Lumber:	1	Wet Use:	
Geometry and Loads:					
Span:	12 ft	Tributary Width:	2.75 ft	P Location:	1.75 ft
Add'l uniform DL:		DL unit load:	12 psf	Concentrated DL:	
Add'l uniform LL:		LL unit load:	60 psf	Concentrated LL:	
Add'l uniform SL:		SL unit load:		Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	198 lbs	DL Reaction 2:	198 lbs	Note: Design automa	atically uses
LL Reaction 1:	990 lbs	LL Reaction 2:	990 lbs	ASD load combinati	ons
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	1188 lbs	Total Reaction 2:	1188 lbs		
Material Properties:					
E	1.6 msi	E'	1.52 msi		
Fb	900 psi	Fb'	792 psi		
Fv	180 psi	Fv'	144 psi		
Fc perp	625 psi	Fc perp'	625 psi		
Emin	0.58 msi	Emin'	0.551 msi		
Deflection analysis:					
For total	load: Allowe	d deflection criteria	a, span/	240	
For LL	only: Allowe	d deflection criteria	a, span/	480	
Max. allowed total defl:	0.6 in		Max LL defl:	0.3 in	
Total defl. * I:	60.78 in^4		Required I:	101.29 in^4	
LL defl. * I:	50.65 in^4		Required I:	168.82 in^4	
Actual deflections:	TOTAL:	0.15 in		0.12 in	
Force analysis:					
Max. moment:	3564	ft-lb	Max Shear:	1188	lbs
	(1)	DE #0	2 5		11.25
Selected Member:	(1)	UF #2	3.5	X	11.25
		D · · · ·		D	
Membe	r properties:	Provided:		Required:	
Mom	ent of inertia:	415.28 m ⁴		168.82 in^4	
Sect	10n Modulus:	/ 5.83 In ³		54. $1n^{3}$	
ı	Bearing Area:	39.38 m ²		12.38 m^2	
Minimum hearing	o dimensione	3 5 in	v	0.54 in	
Terminum Ocal III	5 annonsions.	5.5 111	Λ	0.JT III	

John S. Apolis, P.	Е.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence	!	Date:	5-May-22
Architect:	Suzanne	Zahr		Page number:	D7
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International B	Building Co	de (IBC)			2018 NDS
Beam Description	n: Deck D	rop Beam @	Arc Inter	ior	
Fully Supported:	1	Snow Load:		Wind Load:	
Repetitive Member:		P.T. Lumber:	1	Wet Use:	
Geometry and Loads:					
Span:	8 ft	Tributary Width:	0 ft	P Location:	1.75 ft
Add'l uniform DL:	32.33 lbs/ft	DL unit load:	12 psf	Concentrated DL:	
Add'l uniform LL:	166.2 lbs/ft	LL unit load:	60 psf	Concentrated LL:	
Add'l uniform SL:		SL unit load:		Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	129 lbs	DL Reaction 2:	129 lbs	Note: Design automa	tically uses
LL Reaction 1:	665 lbs	LL Reaction 2:	665 lbs	ASD load combination	ons
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	794 lbs	Total Reaction 2:	794 lbs		
Material Properties:					
E	1.6 msi	E'	1.52 msi		
Fb	900 psi	Fb'	792 psi		
Fv	180 psi	Fv'	144 psi		
Fc perp	625 psi	Fc perp'	625 psi		
Emin	0.58 msi	Emin'	0.551 msi		
Deflection analysis:					
For total	load: Allowe	d deflection criteria	ı, span/	240	
For LL	only: Allowe	d deflection criteria	, span/	480	
Max. allowed total defl:	0.4 in		Max LL defl:	0.2 in	
Total defl. * I:	12.04 in^4		Required I:	30.09 in^4	
LL defl. * I:	10.07 in^4		Required I:	50.37 in^4	
Actual deflections:	TOTAL:	0.03 in		0.02 in	
Force analysis:					
Max. moment:	1588	ft-lb	Max Shear:	794 1	bs
Calastad Marsh	(1)				11.35
Selected Member:	(1)	DF #2	3.5	<u>X</u>	11.25
ъл 1		D		Damitud	
Membe	r properties:	Provided:		Kequired:	
IVIOM	ion Modulus	413.28 m^{4}		$30.3 / 10^{4}$	
Sect	Section Areas	/ 5.05 III ' 3 20 20 :^2		24.00 III '3 9 27 :^2	
T	Section Area:	39.38 III 'Z		$0.2 / III^2$	
I Minimum hearing	dimensions:	3 5 in	v	1.2/111/2 0.36 in	
winnun bealing	s annonsions.	5.5 111	л	0.50 III	

John S. Apolis, P.	.Е.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence		Date:	5-May-22
Architect:	Suzanne	Zahr		Page number:	D8
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International E	Building Co	de (IBC)		,	2018 NDS
Beam Description	1: Deck D	rop Beam @	Arc Rim		
Fully Supported:	1	Snow Load:		Wind Load:	
Repetitive Member:		P.T. Lumber:	1	Wet Use:	
Geometry and Loads:					
Span:	8 ft	Tributary Width:	0 ft	P Location:	1.75 ft
Add'l uniform DL:	90.23 lbs/ft	DL unit load:	12 psf	Concentrated DL:	
Add'l uniform LL:	493.2 lbs/ft	LL unit load:	60 psf	Concentrated LL:	
Add'l uniform SL:		SL unit load:		Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	361 lbs	DL Reaction 2:	361 lbs	Note: Design automa	tically uses
LL Reaction 1:	1973 lbs	LL Reaction 2:	1973 lbs	ASD load combination	ons
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	2334 lbs	Total Reaction 2:	2334 lbs		
Material Properties:					
E	1.6 msi	E'	1.52 msi		
Fb	900 psi	Fb'	792 psi		
Fv	180 psi	Fv'	144 psi		
Fc perp	625 psi	Fc perp'	625 psi		
Emin	0.58 msi	Emin'	0.551 msi		
Deflection analysis:					
For tota	l load: Allowe	d deflection criteria	i, span/	240	
For LL	only: Allowe	d deflection criteria	, span/	480	
Max. allowed total defl:	0.4 in		Max LL defl:	0.2 in	
Total defl. * I:	35.38 in^4		Required I:	88.44 in^4	
LL defl. * I:	29.91 in^4		Required I:	149.53 in^4	
Actual deflections:	TOTAL:	0.09 in	-	0.07 in	
Force analysis:					
Max. moment:	4668	ft-lb	Max Shear:	2334 1	bs
Selected Member	(1)	DF #2	35	Y	11 25
servered wrember.	(1)		0.0	Α	11,40
Membe	r properties:	Provided		Required :	
Mom	ent of inertia	415.28 in^4		149.53 in^4	
Seci	tion Modulus	73.83 in^3		70.72 in^3	
	Section Area:	39.38 in^2		24.31 in^2	
]	Bearing Area:			3.73 in^2	
Minimum bearin	g dimensions:	3.5 in	х	1.07 in	

John S. Apolis, P.	Е.	CSES, Inc.		Job number:	2022.039
Project:	Ross Par	ks Residence		Date:	23-Mar-22
Architect:	Suzanne	Zahr		Page number:	D9
BEAM DESIG	N (Unifo	rm Load+(Concentr	ated Load)	
2018 International B	uilding Co	de (IBC)			2018 NDS
Beam Description	n: Deck D	rop Beam @	South Ca	twalk	
Fully Supported:	1	Snow Load:		Wind Load:	
Repetitive Member:		P.T. Lumber:	1	Wet Use:	
Geometry and Loads:					
Span:	4 ft	Tributary Width:	8 ft	P Location:	1.75 ft
Add'l uniform DL:		DL unit load:	$\frac{12 \text{ psf}}{12 \text{ psf}}$	Concentrated DL:	1170 10
Add'l uniform LL:		LL unit load:	60 psf	Concentrated LL:	
Add'l uniform SL:		SL unit load:	1	Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	192 lbs	DL Reaction 2.	192 lbs	Note: Design automa	atically uses
LL Reaction 1:	960 lbs	LL Reaction 2:	960 lbs	ASD load combinati	ons
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs	100 1000 001101100	
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	1152 lbs	Total Reaction 2:	1152 lbs		
Material Properties:					
Ε	1.6 msi	E'	1.52 msi		
Fb	900 psi	Fb'	936 psi		
Fv	180 psi	Fv'	144 psi		
Fc perp	625 psi	Fc perp'	625 psi		
Emin	0.58 msi	Emin'	0.551 msi		
Deflection analysis:					
For total	load: Allowe	d deflection criteria	ı, span/	240	
For LL	only: Allowe	d deflection criteria	ı, span/	480	
Max. allowed total defl:	0.2 in		Max LL defl:	0.1 in	
Total defl. * I:	2.18 in^4		Required I:	10.91 in^4	
LL defl. * I:	1.82 in^4		Required I:	18.19 in^4	
Actual deflections:	TOTAL:	0.02 in		0.02 in	
Force analysis:					
Max. moment:	1152	ft-lb	Max Shear:	1152	lbs
Selected Member:	(1)	DF #2	3.5	X	7.25
<u> </u>					
Membe	r properties:	Provided:		Required:	
Mom	ent of inertia:	111.15 in^4		18.19 in^4	
Sect	ion Modulus:	30.66 in^3		14.77 in^3	
	Section Area:	25.38 in^2		12. in^2	
I	Bearing Area:			1.84 in^2	
Minimum bearing	g dimensions:	3.5 in	Х	0.53 in	

FOUND ATTOL DESIGN		
ISOLATED FOOTING IN CRA	WL SPACE	
P = 4 186 #		
9=1,500 p====		
$A = Z \overline{Z} q \overline{G} \overline{G} \overline{Z}$		
Areq		4
5=Z' = D A = 4 f + Z > Z.79	(Ftz OK	
==> Z4 x Z4 x 12" FOOTWA w/	(3) #4 BARS E	ACH WHT
PIN PILES @ NEW FOUND	DATION	
Loverding!		
d= 81×8p=+ 138 plf + 32,	NF + 488 plF	+ 48 plf
WALL POOF DEC	K FOUNDATION) FLOOR
S = 2000 pc + X - 1600 pc + FLOOR =	PECK	
MAX LOADING: 1,165 ptf		
PIN PILE CAPACITY: 6,	cocott per Geot	cch Repert
		<i>«</i>
SPACING	5-15 tt	*
PIN FILES E 5'	O.C. MAX	
	Project No. ZOZZ.03	9 Date 5-5-22
Residential and Commercial Structural Design	Project Name Fors	PARKS
6311 17th Avenue NE, Seattle, WA 98115	Comments	
Phone: (206)527-1288 Email: john@cses-engineering.com	Revision	Page <u>F1</u>

ġ.

FOUND ATION DESIGN		
PID PILES @ NORTH WITER	NAL DEZK BE	AM LINE
Locding: $d = 28 plf + 2.24$	5 ft ² × 150 pcf	l = 329 plf
MAX LOADING: 695 pif		PELE
SPACING: 6,000# = 8,6	sft	
PIN PILES @ 8'o.	C. MAX	
PIN PILES @ WORTH EXTEDI	A DECK POL	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	ADE BEAM	= 993 pt DECK
MAX LOADING: 921 plf		
$SPACING: \frac{6,000}{9121} = 6.5$	51. 7 4	
=> PIN PILES @ 6' o.c.	MAX	
PIN PILES @ EAST DECK P	BEAM LINE	
Ladilg: d= 3'x 12 per + Zo	25ft ² x 150pcf	
$\int \frac{\partial ECK}{\partial E = 3^{\prime} \times BO = F}$		
DECK		
MAX LOADING: 554 pl+		
SPACINA:	<u> </u>	
PIN PILES @ 10' a	³ °C. MAX	
CONSULTING STRUCTURAL ENGINEERING SERVICES	Project No. 2022.03	9 Date 5-5-22 PARKS
6311 17th Avenue NE, Seattle, WA 98115	Comments	1719-6-)
Phone: (206)527-1288 Email: john@cses-engineering.com	Revision	_ PageFZ

2022.039 Ross Parks

7010 93rd Ave SE, Mercer Island, WA 98040, USA

Latitude, Longitude: 47.53937699999999, -122.2148216

		92nd Ave SE Misthaven Homes					
Goo	gle	Map data ©2022					
Date		3/22/2022, 3:21:51 PM					
Design Code Reference Document		ASCE7-16					
Risk Category		II					
Site Class		D - Default (See Section 11.4.3)					
Туре	Value	Description					
SS	1.454	MCE _R ground motion. (for 0.2 second period)					
S ₁	0.503	MCE _R ground motion. (for 1.0s period)					
S _{MS}	1.744	Site-modified spectral acceleration value					
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value					
S _{DS} 1.163		Numeric seismic design value at 0.2 second SA					
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA					

John S. Apolis, P.E.		CSES, Inc.		Joł	o number:	2022.039			
Project:	Ross Parks	Residence			Date:	23-Mar-22			
Architect:	Suazanne Z	ahr		Page	e number:	L 1			
Lateral Loads Des	ign per AS	CE 7-16, V	Wind: S	Section 28	Seismic	: Section	12		
(Simplified Envelope Procedure Part 2) 2015 & 2018 International Building Code (IBC)									
WIND LOADS	110	mph Basic Wi	ind Speed			·	2018 NDS		
Ps = lambda * Kzt * Ps	s(30) * 0.6	Exposure	Ċ	Roof Slope:	3.00	:12 =	14.0		
Least Horizontal Dim	ension. feet:	60	Mean R	Roof Ht. feet:	10		(degrees)		
lambda =	1.21	a =	4.0	ft. 2a =	8.0	ft	(8)		
Iw =	1.00	KzT =	1.00						
		Tabulated		Calaid	Min	(Dar spation)	7961		
		<u>Tabulateu</u> Wind		<u>Caic u</u> Design	<u>Iviiii</u> Design	minimum tal	20.0.4 Websted wind		
Tabulated Ps(30)	Zone	Pressure		<u>Design</u> Pressure	<u>Design</u> Pressure	nressure is 1	6 PSE for		
(Refer to ASCE 7-16, Fig	ure 28.6-1)	<u>1105010</u>	(*lambo	$\frac{11055010}{1a*KzT*0.6}$	<u>11055010</u>	zonesA.C. at	nd 8 PSF for		
(horizontal)	A	23.6	psf	17.1	17.1	zones B. D)			
()	В	-8.2	psf	-5.9	5.9	,_,_,			
"	С	15.7	psf	11.4	11.6				
"	D	-4.7	psf	-3.4	5.8				
(vertical)	E	-23.1	psf	-16.8					
"	F	-14.9	psf	-10.8					
"	G	-16.0	psf	-11.6					
"	Н	-11.4	psf	-8.3					
(uplift on overhangs)	E(oh)	-32.3	psf	-23.4					
"	G(oh)	-25.3	psf	-18.4					
(Equivalent Lateral H	Force Proced	ure, Section	n 12.8)						
SEISMIC LOADS	Ie	1.0	R =	6.5	ASCE 7-16	5, Table 12.2.	1		
Seismic Parameters	Group I	Site Class:	D						
per ASCE 7-16)	PGA (.2 sec)	1.4540	Fa =	1.00	ASCE 7-16	5 Table 11.4-1	l		
	PGA (1 sec)	0.5030	Fv =	1.50	ASCE 7-16	5 Table 11.4-2	2		
Seismic Design Categorie	es per ASCE 7-	-16 Tables 11.	.6-1, 11.6-	2					
	Based on Sds:	D	B	ased on Sd1:	D				
PGA's based on peak gro	und acceleratio	ns per latest U	SGS Haza	rds Program	(based on l	at/lon).	4 1		
Ss =	1.4540		Sms	= Fa * Ss $=$	1.45	Equation 11.	4-1		
51 =	0.5050		Sm1	= FV * SI =	0.75	Equation 11.	4-2		
Equations 11.4-3, 11.4-4	Sds = 2	2/3 * Sms =	0.97	Sd1 = 2/2	3 * Sm1 =	0.50			
Equation 12.14-11	Cs(%V) = (S	ds / (R/I)) =	0.149	Building per	riod < 0.5 s	per IBC eq	12.8-7		
	****	4.00	e : c	1 1	1 / 1	a			
Base Shear = $\%$ V	* W * 0.7 =	4.28	psi , unifo	ormly distri	buted ove	r floor area	1 0 10		
(0.7 reduction factor per A	SCE /-16, Sec	tion 2.4.1, Eq	(seismic vo	ertical distrib	ution per IE	3C eqs 12.8-1	1 & 12)		
	Roof DL	Wall DL (p	<u>sf)</u>	Story Heig	<u>ght</u>	<u>Lateral</u>			
Base = top of foundation	<u>(psf)</u>	<u>dist. over fl</u>	<u>oor area</u>	Above Bas	<u>se (ft)</u>	Load (psf)			
Roof	15	6		19		2.85			
Main Floor	12	8		10		1 43			
I ower Elson	14	U		IV		1. 1 .			
Lower Floor						0.00	,		
Total Seismic DL:	41				Sum	4.28	}		

LATERAL DESIGN - UPPER	El 202
SOUTH SHEAR WALL - 1_=	7.5'+ 4'
$P = 27' \times (4' + 5') \times 11.6 = + 2$	7'x 2.5'x 5.8 pmf
$P_{\omega} = 4,776 \#$	
$P_{e} = 30' \times 27' \times 285 = 140' \times 10' \times 1$	33 × 1.43 psf
$P_{E} = 4, 196 \pm$	
$V = \frac{4,776^{\#}}{11375'} = 420 \text{ plf}$	<550 ptf =10 <u>5</u> 603
H= 420 plfx9'= 3,780#.	< 4,340# = HDUS
EAST SHEAR WALL - L=	4'+3'
Pw= 8'x (4'+5') x 17.1 p= + 5'x	(9'+5')x 11.6 p=f+ B'x 2.5 x 5.7 p=
$P_{\omega} = 2,919.4$	
$P_{E} = 13' \times 54' \times 2.85 \text{ psf} + 16' \times 66'$	(x 143 p=f
Pe= 3,511#11	
$V = \frac{3,511 \#}{3.875' + 2.91'} = 517 \text{ plf } <$	550 plf =0 <u>5603</u>
H = 517 pt + x q' = 4,653 # < 5	5,645# =>> HOU5 w/ DF stude
1 1	
CONSULTING STRUCTURAL ENGINEERING SERVICES Residential and Commercial Structural Design	Project No. 2022.039 Date 3-22-22 Project Name Pors PAPLES
6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com	Comments